skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Zhaojian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 25, 2026
  2. Free, publicly-accessible full text available August 25, 2026
  3. Free, publicly-accessible full text available September 1, 2026
  4. Abstract Data‐enabled predictive control (DeePC) is a data‐driven control algorithm that utilizes data matrices to form a non‐parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non‐parametric representation of DeePC. This neural network is trained offline using historical open‐loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Free, publicly-accessible full text available April 1, 2026
  6. Free, publicly-accessible full text available January 1, 2026
  7. We report a mechano-diffusion mechanism that harnesses mechanical deformation to control particle diffusion in stretchable hydrogels with a significantly enlarged tuning ratio and highly expanded tuning freedom. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026